Energi Generasi Tiga Berbasis Mikrob Fotosintetik dan Mikroalga Mendukung Solusi Krisis Energi Ramah Lingkungan

Authors

Dwi Susilaningsih
Lembaga Ilmu Pengetahuan Indonesia

Keywords:

energi, mikroorganisme

Synopsis

Perkembangan energi Indonesia berawal dari pengeboran minyak bumi sekitar tahun 1850-an yang dilanjutkan dengan penemuan energi baru dan terbarukan pada tahun 1970-an. Salah satu energi baru dan terbarukan adalah bioenergi. Bioenergi adalah energi yang berasal dari material hayati, baik hewan, tumbuhan maupun mikroorganisme yang mempunyai bentuk padat, gas, dan cair. Bioenergi yang dimanfaatkan untuk bahan bakar alat transportasi dan mesin dikategorikan sebagai biofuel. Biofuel berdasarkan sumber material, waktu, dan teknologi yang digunakan, digolongkan menjadi generasi kesatu (berbasis bahan pangan), generasi kedua (berbasis lignoselulosa), dan generasi ketiga (berbasis alga), serta generasi keempat (berbasis terobosan teknologi).
Berdasarkan permasalahan kebutuhan energi, sumber energi, dan polusi lingkungan dari energi konvensional, maka diperlukan solusi penciptaan energi bersih dan ramah lingkungan. Materi yang berkaitan dengan penelitian EBT, perkembangan EBT, status penelitian biofuel generasi ketiga (sumber, proses, dan refinery), strategi, dan tantangan aplikasi biofuel; rekomendasi agar biofuel dapat diaplikasikan; dan peran para pemangku kepentingan yang diharapkan; serta kendala dan tantangan akan disajikan dalam bab-bab berikut ini.

Downloads

Download data is not yet available.

Author Biography

Dwi Susilaningsih, Lembaga Ilmu Pengetahuan Indonesia

Menamatkan Sekolah Dasar Negeri Ngraho 1, tahun 1981, Sekolah Menengah Pertama Negeri 1 Cepu, 1984, dan Sekolah Menengah Atas Negeri 1 Cepu, 1987. Memperoleh gelar Sarjana Biologi (Doktoranda) dari Universitas Jenderal Soedirman, Purwokerto tahun 1992, gelar Magister Farmasi dari Universitas Osaka, Jepang tahun 2000, dan gelar Doktor bidang Farmasi dari Universitas Osaka, Jepang tahun 2003.

References

1. Direktorat Jenderal Pengendalian Perubahan Iklim. Kementerian
Lingkungan Hidup dan Kehutanan, Republik Indonesia. Kontribusi
penurunan emisi GRK nasional, menuju NDC 2030. http://
ditjenppi.menlhk.go.id; 2020.
2. Undang-Undang Republik Indonesia, No. 16 Tahun 2016.
Pengesahan Paris Agreement to The United Nations Framework
Convention on Climate Change (Persetujuan Paris atas
Konvensi
Kerangka Kerja Perserikatan Bangsa-Bangsa Mengenai
Perubahan
Iklim). www.hukumonline. com/pusatdata; 2016.
3. Paris Agreement. United Nations Treaty Collection. 8 July 2016.
Archived from the original on 21 August 2016. Retrieved 27 July
2016.
4. Sekretaris Jenderal Dewan Energi Nasional. Indonesia
energy
outlook 2019. Dewan Energi Nasional; 2019.
5. Kementerian Energi dan Sumber Daya Mineral, Direktorat Jenderal
Minyak dan Gas Bumi. Rencana Strategis 2015–2019.
https://www.esdm.go.id/assets/media/content/Renstra_KESDM.
pdf. 2015.
6. Peraturan Pemerintah Republik Indonesia No. 79 Tahun 2014.
Kebijakan Energi Nasional. www.hukumonline.com/pusatdata;
2014.
7. Lin CY, Miyake J, Susilaningsih D. The 2011 Asian Bio-Hydrogen
and Biorefinery Symposium (2011ABBS). International
Journal of Hydrogen Energy 2012; 37(20): 15.433–15.435.
8. Mark AD, Mark ZJ. Providing all global energy with wind, water,
and solar power, Part II: Reliability, system and transmission
costs, and policies. Elsevier Ltd. Energy Policy 2012; 39: 1170–
1190.
9. Kamera A. Sejarah penemuan minyak bumi [Internet]; 2013. Diunduh
dari: http://oildomes.blogspot.com/2013/12/sejarah-penemuan-
minyak-bumi-di-dunia.html.
10. Kementerian Energi dan Sumber Daya Mineral RI. Potensi energi
baru dan terbarukan (EBT) Indonesia [Internet]; 2018. Diunduh
dari: https://www.esdm.go.id/id/media-center/arsip-berita/potensi-
energi-baru-terbarukan-ebt-indonesia.
11. Singh P, Gupta H, Gupta SK, Dwivedi V. Conventional and
non-conventional energy resources of India: present and future.
Conference on Emerging Trends in Mechanical Engineering at
Faculty of Engineering & Technology. Agra, India: RBS College
Bichpuri; 2011.
12. IEA. Nuclear power in clean energy system [Internet]; 2020.
Diunduh dari: https://www.iea.org/reports/nuclear-power-
in-a-clean-energy-system.
13. Susilaningsih D. Konversi biomassa untuk energi alternatif
Indonesia:
Tinjauan sumber daya, teknologi, manajemen, dan kebijakan.
Jakarta: LIPI Press; 2014.
14. Benneman JR. Renewable resources and renewable energy: A
Global Challenge. New York: CRC Press; 2006.
15. Timothy S, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa
J, Tokgoz S, Hayes D, Tun-Hsiang Y. Use of U.S. Croplands
for biofuels increases greenhouse gases through emissions
from land-use change. Science 2011; 319(5867): 1.238–1.240.
doi:10.1126/science.1151861. PMID 18258860.
16. Christian II JA. Feasibility of second and third generation biofuel
in general aviation: A research report and analysis. McNair
Scholars
Research Journal 2014; 1: Article 4.
17. Alam F, Mobin S, Chowdhury H. Third generation biofuel from
microalgae. Procedia Engineering 2015; 105: 763–768.
18. Richard LK. Obstacles to renewable energy and energy efficiency.
Dalam: Parker L dkk., editor. From silos to systems: Issues
in clean energy and climate change. A report on the work of the
REIL Network, 2008–2010. Yale School of Forestry & Environmental
Studies; 2010.
19. Susilaningsih D. Biodiversitas mikroalga dalam ekspedisi Pulau
Enggano. Dalam: Maryanto I, Hamidy A, Keim AP, Sihotang
VBL, Lupiyaningdyah P, Irham M, Ardiyani M. Jakarta: LIPI
Press; 2018.
20. Praharyawan S, Rahman DY, Susilaningsih
D. Characterization
of lipid productivity and fatty acid profile of three fast-growing
microalgae isolated from Bengkulu for possible use in health application.
Journal of Tropical Life Science 2016; 6(2): 79–85.
21. Lu J, Sheahan C, Fu P. Methabolic engineering of algae for
fourth generation biofuels production. Energy and Environmental
Science
2011; 4(7): 2.451–2.466.
22. Lackner M. 3rd-generation biofuels: Bacteria and algae as sustainable
producers and converters. Dalam: Chen WY, Suzuki T,
Lackner M, editor. Handbook of climate change mitigation and
adaptation. Cham: Springer; 2017.
23. Li H, Can AF, Liao JC. Biofuels: Biomolecular engineering fundamentals
and advances. Annual Review of Chemical and Biomolecular
Engineering 2010; 1: 19–36.
24. IEA. Energy Policy of IEA Countries 2019: Review. https://www.
iea.org/reports/energy-policies-of-iea-countries-estonia-2019-review.
25. Alaswad A, Dassisti M, Prescott T, Olabi AG. Technologies and
development of third generation biofuel production. Renewable
and Sustainable Energy Reviews 2015; 51: 1.446–1.460.
26. Hadiyanto H, Widayat W, Kumoro A. Potency of microalgae as
biodiesel source in Indonesia. Int. Journal of Renewable Energy
Development 2012; 1: 23–27.
27. Hanif M. Perancangan proses konversi mikroalga menjadi biofuel
sebagai inovasi teknologi ramah lingkungan. Jurnal Teknologi
Lingkungan 2015; 16(1): 1–8.
28. Susilaningsih D. Biohidrogen karier energi masa depan.
Biotrends 2015; 2(1): 11–12.
29. Madigan MT, Jung DO. On overview purple bacteria: Systematics,
physiology and habitats. Photosynthesis and Respiration Book
Series (AIPH). Dordrecht: Springer; 2009; 28: 1–15.
30. Gazali FM, Praharyawan S, Susilaningsih D. Dark fermentative
hydrogen production from cheese whey using hydrogen-producing
bacteria isolated from mount Pancar Hot Spring, West Java.
IOP Conf. Ser.: Earth Environ. Sci. 2020; 439 012004.
31. Susilaningsih D. Ekspedisi Sulawesi Barat: flora, fauna dan
mikroorganisme Gandang Dewata. Jakarta: LIPI Press; 2018.
32. Raharjo S, Fatanah VN, Susilaningsih D, Kasim M, Susilawati
M, Delicia YR, Tien. Screening of marine microalgae collected
from Wakatobi as anti-tyrosinase. Journal of Physics: Conference
Series 2019; 1338(012003). Doi: 10.1088/1742/1338/1/012003.
33. Rahman DY, Praharyawan S, Raharjo S, Fadiyah F. Susilaningsih
D. Morphology and molecular characterization of newly isolated
microalgae strain Chlorella volutis LIPI13-WKT-066 from
Wakatobi and its potential use. Annales Bogorienses 2019; 23(1):
13–19.
34. Abo BO, Odey EA, Bakayo M, Kalakodio L. Microalgae to biofuels
production: a review on cultivation, application and renewable
energy. Rev Environ Health 2019 Mar 26; 34(1): 91–99. doi:
10.1515/reveh-2018-0052.
35. Susilaningsih, Rahman DY, Sekiguchi H. Screening for lipid depositor
of Indonesian microalgae isolated from seashore and peatland.
International Journal of Hydrogen Energy 2014; 39(33):
19.394–19.399.
36. Susilaningsih D, Agustini NWS, Kabinawa INK. Production of
beta-carotenoid scenedesmus using different growth regulator
addition. Prosiding Hasil Penelitian dan Pengembangan Bioteknologi
1995.
37. Praharyawan S, Gazali FM, Susilaningsih D. Utilization of acid-
hydrolized microalgal biomass collected from eutrophication-
affected freshwater pond as a substrate for biogas (biohydro31
gen) production by means of dark- and photo-fermentation. IOP
Conf. Ser.: Earth Environ. Sci. 2020; 439 012003.
38. Susilaningsih D, Harahap PS, Farida H, Rahman DY. Lactic
acid and hydrogen production from microalgal bloom biomasses.
Journal Technology Indonesia 2017; 40(1): 1–11.
39. Metting B, Pyne JW. Biologically active compounds from microalgae.
Enzyme Microb. Technol. 1986; 8: 386–394. DOI:
10.1016/0141-0229(86)90144-4.
40. Miyamoto K. Ohta S, Nawa Y, Mori Y, Miura Y. Hydrogen production
by a mixed culture of a green alga, Chlamydomonas reinhardtii
and a photosynthetic bacterium, Rhodospirillum rubrum.
Microbiology and Fermentation Industry 1987; 51(5): 1319–
1324. https://doi.org/10.1080/00021369.1987.10868217.
41. Susilaningsih D. Bioproduction process of tropical microalgae.
Paten Indonesia No. P00201504004. 2015 Juni 30.
42. Susilaningsih D. Closed reactor for farming tropical microalgae.
Paten Indonesia No. S002201501895. 2016 Mei 13.
43. Susilaningsih D, Anam K, Simanungkalit SP, Rahman DY.
Sistem reaktor untuk memproduksi biohidrogen menggunakan
mikroba fotosintetik. Paten Indonesia No. P00201708593. 2017
November 30.
44. Susilaningsih D, Azizah YN, Andrianto D. Immobile Rhodobium
Marinum for enhancing hydrogen excitation: optimization
of environmental factors [light intensity, pH and agitation]. IOP
Conf. Ser.: Earth Environ. Sci. 2020; 439 012012.
45. Rahman DY, Rachmayati R, Widyaningrum DN, Susilaningsih
D. Enhancement of lipid production of chlorella sp. 042 by mutagenesis.
IOP Conf. Ser.: Earth Environ. Sci. 2020; 439 012021.
46. Miyake J. The science of biohydrogen in biohydrogen. Switzerland
AG: Springer Nature; 2019.
47. Mansur D, Fitriady MA, Susilaningsih D, Simanungkalit SP.
Production of biodiesel from Coelastrella sp. microalgae. AIP
Conference Proceedings 2017; 1904(1): 020068.
48. Susilaningsih D. Lactic acid production by using biomass from
plankton blooms in euthrophic lake. Proceedings of the Japan
Society for Biotechnology Conference 1999; 11: 286.
49. Susilaningsih D, Nusaibah, Susanti H, Praharyawan P, Reko PM,
Arifin Nur A, Praptijanto A, Santoso WB, Chu CY. Biorefinery of
vinasse an ethanol destillated liquid waste of sugarcane for algal
growth substrates and biohydrogen production. Bogor: ISBINARU;
2017. 308–317.
50. Tapia-Venegas E, Ramirez-Morales JE, Silva-Illanes F, Toledo-
Alarco ?J, Paillet F, Escudie R, Chyi-How L, Chu CY, Hoang-
Jyh L, Marone A, Lin CY, Kim DH, Trably E, Ruiz-Filippi
G. Biohydrogen production by dark fermentation: scaling-up and
technologies integration for a sustainable system. Rev Environ
Sci Biotechnol 2015; 14: 761–785. DOI 10.1007/s11157-015-
9383-5.
51. Susilaningsih D, Anam K, Habibi MS, Harwati TU. Mix-composition
of bacterium for hydrogen production and the method from
bioproduction the consortia. Paten Indonesia No. P00201000362.
2011 Maret 31.
52. Anam K, Harwati TU, Habibi MS, Susilaningsih D. Photofermentative
hydrogen production using Rhodobium marinum from
bagasse and soy sauce wastewater. International Journal of Hydrogen
Energy. International journal of hydrogen energy 2012;
37(20): 15.436–15.442.
53. Chandrasekhar P, Lee YJ, Lee DW. Biohydrogen production: strategies
to improve process efficiency through microbial routes. Int.
J. Mol. Sci. 2015; 16: 8266 –8293. doi:10.3390/ijms16048266.
54. Susilaningsih D, Ulhiza TA, Anam K. Substitution component
cultivation media of photofermentation process for low cost hydrogen
gas production. Teknologi Indonesia, 2017; 40(2): 108–
115.
55. Nur A, PraptijantoA, Santoso WB, Dimyani A, Suherman, Susilaningsih
D. Sistem bahan bakar hidrogen untuk kendaraan bermotor.
Paten Indonesia No. P00201708593. 2017 November 30.
56. Susilaningsih D, Apridah CD, Dian NW, Khairul A. Biodiesel
from Indigenous Indonesian marine microalgae, Nannochloropsis
sp. Journal of Biotechnology Research in Tropical Region
2009; 2: 2.
57. Harwati TU, Kasai Y, Kodama Y, Susilaningsih D, Watanabe
K. Characterization of diverse hydrocarbon degrading bacteria
isolated from Indonesian seawater. Microbes Environ. 20 2007;
22(4): 412–415.
58. Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007; 25:
294–306.
59. Dieni Mansur D, Dwi Susilaningsih D, Sabar PS, Adelia DV.
Production of neutral lipid from microalgae Coelastrella sp.
Paten
Indonesia No. P00201808696. 2018 Oktober 30.
60. Susilaningsih D. Observation, isolation and characterization of
microalgal red tide agent dinoflagellates Prorocentrum sp. Indonesian
Journal of Marine Sciences/Ilmu Kelautan 2014; 19(3).
61. Susilaningsih D, Siburian MD, Murniasih T. Biodiversity of hydrocarbon-
producing microalgae from oil contaminated in coastal
zone of Batam Island. Marine Research Indonesia (MRI) 2008;
33(2): 115–120.
62. Susilaningsih D, Harahap PS, Farida H, Rahman DY. Lactic
acid and hydrogen production from microalgal bloom biomasses.
Journal Technology Indonesia 2017; 40 (1): 1–11.
63. Martínez-Francés E, Escudero-Oñate C. Microalgal biotechnology
cyanobacteria and microalgae in the production of valuable
bioactive compounds [Internet]; 2018. Diunduh dari: https://
intechopen.com/books/microalgal-biotechnology/cyanobacteria-
and-microalgae-in-the-production-of-valuable-bioactive-
compounds. DOI:10.5772/intechopen.74043.
64. Susilaningsih D, Lestari S, Kusnadi S, Hidayat T, Susanti H. Efikasi
limbah sagu sebagai substrat kaya nutrisi untuk mikroalga
isolat Lipi11-2-Al002 [sago waste eficacy as nutrition rich substrate
for microalgae LIPI11-2-Al002 Isolate]. Berita Biologi
2014; 13(3).
65. Susilaningsih D, Hirata K, Asada Y, Miyamoto K. Utilization of
cyanobacterial biomass from water bloom for bioproduction of
lactic acid. World J. of Microbiol. Biotechnol. 2001; 17: 259–264.
66. Susilaningsih D. Accelerating the excretion of biosurfactant from
cyanobacterium Oscillatoria sp. by co-cultivation with Anabaena.
Hayati J. of BioSci 2007; 14(1): 8–22.
67. Mustopa AZ, Ridwan M, Sukmarini L, Susilaningsih D, Hasim
H, Delicia DY. Purification and characterization of polysaccharide
from microalgae BTM 11 as inhibitor of hepatitis c virus rna
helicase. Indonesian Journal of Pharmacy 2015; 25(3): 134–139.
68. Priatni S, Budiwati TA, Ratnaningrum D, Kosasih W, Andryani
R, Hani S, Susilaningsih D. Antidiabetic screening of some Indonesian
marine cyanobacteri collection. Biodiversitas 2016; 17(2):
642–646. DOI: 10.13057/biodiv/d170236.
69. Susilaningsih D. Urbanisation, land use, land degradation and
environment; Characterizing and screening oil degrading microbes
for land and beach reclamation in Indonesia. New Delhi:
Daya Publishing House; 2011.
70. Lindblad P. Cyanobacterial H2 metabolism: Knowledge and potential/
strategies for a photobiotechnological production of H2. Biotecnologia Aplicada 1999; 16: 141–144. Published online
2005 Dec 21. DOI: 10.1186/1475-2859-4–36.
71. FAO. National aquaculture sector overview: Indonesia. FAO,
Fisheries and Aquaculture Department; 2020. http://www.fao.
org/fishery/countrysector/nasoindonesia/en.
72. Susilaningsih D, Sirait LS, Anam K, Habibi MS, Prasetya B.
Possible application of biohydrogen technologies as electricity
sources in Indonesian remote areas. International Journal of Hydrogen
Energy 2014; 39(33): 19.400–19.405.
73. Namita K, Linblad P. Cyanobacterial hydrogenases and hydrogen
metabolism revisited: Recent progress and future prospects. Int.
J. Mol. Sci. 2015; 16(5): 10.537–10.561. https://doi.org/10.3390/
ijms160510537.
74. Hydrogen Council. Path to hydrogen competitiveness a cost perspective;
20 Januari 2020. Diunduh dari: www.hydrogencouncil.
com.
75. Surabhi CD, Sanjoy KB. Hydrogen production by cyanobacteria.
Microb Cell Fact 2005; 4: 36.
76. Mansur D, Fitriady MA, Susilaningsih D, Simanungkalit SP, E
Agustian E. Lipid extraction of wet BLT 0404 microalgae for
biofuel application. AIP Conference Proceedings 2017; 1803(1):
020006.
77. Susilaningsih D, Asahedi U, Fredrick OO, Dian NW, Hani S,
Hadi S, Nengah I, Utut W. Isolasi gen sitrat sintase bakteri Pseudomonas
aeruginosa PS2 dari Rizosfer pohon kruing (Dipterocarpus
sp.) untuk model konstruksi metabolisme sel mikroalga
berkarbohidrat rendah. Berita Biologi 2019; 18(2): 247–253.
DOI: 10.14203/beritabiologi.v18i2.2967
78. Fehler SWG, Light RJ. Biosynthesis of hydrocarbons in Anabaena
variabilis. Incorporation of [methyl-14C]- and [methyl-2H3]-methionine.
Biochemistry 1970; 9: 418–428.
79. Praharyawan S, Susilaningsih D, Khaswar S. Statistical screening
of medium components by plackett-burman experimental design
for biosurfactant production by Indonesian indigenous Bacillus
sp. DSW17. Asian Jr. of Microbiol.Biotech.Env.Sc. 2013;
15(4): 805–813.
80. Hilda F, Puspita SH, Rifana S, Rudyanto G, Rahman DY, Susilaningsih
D. Outdoor closed system of algal mass culture: In
sight of comparison on vertical and horizontal photobioreactor
for cultivating the Spirulina sp. Reaktor Chemical Engineering
Journal 2019; 19(2). https://doi.org/10.14710/reaktor.19.2.54-61.
81. FAO. The Water-Energy-Food Nexus: A new approach in support
of food security and sustainable agricultureFood and Agriculture
Organization of the United Nations. Rome. 2014. Retrieved
2020-02-07.

Downloads

Published

August 26, 2020

Categories