Biodiversitas, Perakitan Klon Unggul dan Pemanfaatan Bioresources Ubi Kayu untuk Mendukung Ketahanan Pangan

Authors

Enny Sudarmonowati, N. Sri Hartati, Ahmad Fathoni, & Hartati

Keywords:

Biodiversitas, Perakitan, Klon, Unggul, Pemanfaatan, Bioresources, Ubi, Kayu, Mendukung, Ketahanan, Pangan

Synopsis

Penulis: Enny Sudarmonowati, N. Sri Hartati, Ahmad Fathoni, & Hartati

Siapa yang tak kenal dengan ubi kayu? Makanan dengan sumber karbohidrat paling tinggi di antara jenis makanan lain, seperti beras, jagung, dan gandum itu sangat populer di Indonesia. Tak heran, pemanfaatan dan budi daya ubi kayu sangat gencar dilakukan oleh masyarakat kita.

Namun, siapa sangka dibalik popularitasnya, ubi kayu masih memiliki persoalan dalam hal produktivitas dan pemanfaatan pascapanen, antara lain belum populernya varietas unggul ubi kayu di kalangan petani, ketersediaan dan kemudahan akses bi bit unggul oleh petani, permasalahan perubahan iklim seperti cekaman kekeringan, terbatasnya daya simpan umbi pascapanen, dan belum optimalnya pemanfaatan inovasi teknologi pascapanen oleh masyarakat.

Semua persoalan tersebut harus segera ditangani mengingat diversifikasi pangan (ubi kayu) pada akhirnya berbicara tentang kandungan gizi sumber pangan yang akan berdampak pada hasil olahan pangan. Apalagi saat ini kita terus bergerak menuju kemandirian dan aksesibilitas pangan.

Jadi, jika Anda ingin mengetahui apa saja riset-riset tentang ubi kayu yang telah dilakukan oleh LIPI bersama kementerian dan lembaga lain di Indonesia selama 10 tahun terakhir guna menangani persoalan tersebut, silakan Ian jut membuka halaman pertama buku ini. Semoga wawasan kita tentang upaya kedaulatan pangan semakin tercerahkan dengan hadirnya buku ini.

 

 

Copyeditor :  Risma Wahyu Hartiningsih & Noviastuti Putri Indrasari Layouter : Rusli Fazi Cover designer  : Rusli Fazi Registrasi : ISBN 978-602-496-026-1
Halaman : xxiv + 304 hlm. Dimensi : B5 (17,6 × 25 cm)

©2018 Lembaga Ilmu Pengetahuan Indonesia (LIPI)

Downloads

Download data is not yet available.

References

Aduening, J. A. M., Lamboll, R. I., Mensah, G. A., Lamptey, J. N., Moses, E., Dankyi, A., & Gibson, R.W. (2006). Development of superior cassava cultivars in Ghana by farmers and scientists: The process adopted, outcomes and contributions and changed roles of di erent stakeholders. Euphytica 150, 47–61.

Ceballos, H., Kulakow, P., & Hershey, C. (2012). Cassava breeding: Current status, bottlenecks and the potential of biotechnology tools. Tropical Plant Biol. 5, 73–87.

FAO. (2016). Food outlook: Biannual report on global food markets. Diakses pada 17 November 2016 dari http://www.fao.org/3/a-i6198e.pdf.

Fathoni, A. (2017). Riset ubi kayu: Status dan prospek pemanfaatannya. Dipresentasikan pada Lokakarya Peran Riset dan Kebijakan untuk Penguatan Rantai Nilai Ekonomi Ubi Kayu Indonesia. Cibinong, 7 September 2017.

Pohan, R. R. (2011). Analisis pendapatan usaha tani, pemasaran dan nilai tambah ubi kayu. (Skripsi), Departemen Agribisnis, Fakultas Ekonomi dan Manajemen, IPB. Hlm. 1–4.

Suherman, M. (2012). Pedoman teknis pengelolaan produksi ubi kayu. Direktorat Budi daya Aneka Kacang dan Umbi, Direktorat Jenderal Tanaman Pangan. Kementerian Pertanian. Hlm. 1–2.

Arnata, I. W. (2009). Pengembangan alternatif teknologi bioproses pembuatan bioetanol dari ubi kayu menggunakan Trichoderma viride, Aspergillus niger dan Saccharomyces cerevisiae. (Tesis), Magister Sains, Program Studi Teknologi Industri Pertanian, Sekolah Pascasarjana Institut Pertanian Bogor.

Balitkabi. (2004). Balai Penelitian Tanaman Kacang-kacangan dan Umbi-umbian. Malang: Kementerian Pertanian, 31 hlm.

Balitkabi. (2005). Teknologi produksi kacang-kacangan dan umbi-umbian. Malang: Balai Penelitian Tanaman Kacang-kacangan dan Umbi-umbian, Kementerian Pertanian.

Beni, H., Kalsum, N., & Sur ana. (2009). Karakterisasi tepung ubi kayu modi kasi yang diproses menggunakan metode pragelatinisasi parsial. Jurnal Teknologi Industri dan Hasil Pertanian, 14(2), 148–159.

BPS. (2017). Tanaman ubi kayu per provinsi. Diakses pada tanggal 5 September 2017 dari https://data.go.id/dataset/tanaman-ubi-kayu-per-provinsi.

Bredeson, J. V., Lyons, J. B., Prochnik, S. E., Wu, G. A., Ha, C. M., Edsinger-Gonzales, E., ., ... & Rokhsar, D. S. (2016). Sequencing wild and cultivated cassava and related species reveals extensive interspeci c hybridization and genetic diversity. Nature Biotechnology. 34, 562–570. DOI 10.1038/nbt.3535.

Bull, S. E., Owiti, J. A., Niklaus, M., Beeching, J. R., Gruissem, W., & Vanderschuren, H. (2009). Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava. Nat. Protoc., 4, 1845–1854. DOI: 10.1038/ nprot.2009.208

CBS. (2000). Proyeksi rumah tangga produksi dan luas panen ubi kayu. Jakarta: Badan Pusat Statistik.

CGIAR. (2000). Root and tuber crops in the global food system. A Vision Statement to the Year 2020. CIP, Lima, Peru.

Chetty, C. C., Rossin, C. B., Gruissem, W., Vanderschuren, H., & Rey, M. E. C. (2013). Empow- ering biotechnology in southern Africa: Establishment of a robust transformation platform for the production of transgenic industry-preferred cassava. New Biotechnol., 30, 136–143. DOI: 10.1016/j.nbt.2012.04.006

Diniyah, N., Setiawati D., Wiwik, S. W., & Subagio A. (2017). Karakterisasi mi mojang (mocaf-jagung) dengan perbedaan jenis dan konsentrasi bahan pengikat. Jurnal Penelitian Pascapanen Pertanian, 14(2), 98–107.

Faridah, A., & Widjanarko, S. B. (2014). Penambahan tepung porang pada pembuatan mi dengan substitusi tepung mocaf (modi ed cassava our). J. Teknol. dan Industri Pangan, 25(1), 99–105.

Fathoni, A., Zainuddin, I., & Sudarmonowati, E. (2012). Establishing standardized Agrobacterium-mediated friable embryogenic callus (FEC) transformation and FEC induction of cassava (Manihot esculenta Crantz) in Indonesia. International Conference on Biotechnology. Research Center for Biotechnology, Indonesian Institute of Sciences LIPI. Bogor. 13–14 November 2012.

Fitriani, H., Hartati, S. N., & Sudarmonowati, E. (2012). The superiority of glutamine in embryogenic callus induction of “Roti” cassava farmer preference genotype. Proceeding of the 5th Indonesia Biotechnology Conference an International Forum. Mataram, Lombok, 4–7 Juli 2012.

Guira, F., Some, K., Kabore, D., Lingani, H. S., Traore, Y., & Savadogo, A. (2017). Origins, production, and utilization of cassava in burkina faso, A contribution of a neglected crop to household food security. Food Science & Nutrition, 5, 415–423.

Hankoua, B. B., Ng, S. Y. C., Puonti-Kaerlas, J., Fawole, I., Dixon, A. G. O., & Pillay, M. (2005). Regeneration of a wide range of African cassava genotypes via shoot organogenesis from cotyledon of maturing somatic embryos and conformity of the eld-established regenerants. Plant Cell Tissue Organ Cult., 81, 200–211. DOI: 10.1007/s11240-005- 0514-5

Hartati, N. S., Supatmi, Aryaningrum, P. D., & Sudarmonowati, E. (2013). Identi cation of di erentially expressed cDNA in cassava under drought stress using cDNA-RAPD approach. Annales Bogorienses, 17(1), 7–14. ISSN: 0517-8452

Howeler. (2008). A new future for cassava in asia: Its use as food, feed and fuel to bene t the poor. Proceedings of the Eighth Regional Workshop. Vientiane, Lao PDR, 20–24 Oktober, 2008.

Jansson, C., Westerbergh, A., Zhang, J., & Xinwen Hu, S. C. (2009). Cassava, a potential biofuel crop in (the) People’s Republic of China. Appl. Energy, 86, S95–S99. DOI: 10.1016/j.apenergy.2009.05.011

Koehorst-van Putten, H. J. J., Sudarmonowati, E., Herman, M., Pereira-Bertram, I. J., Wolters, A. M. A., & Meima, H. (2012). Field testing and exploitation of genetically modi ed cassava with low-amylose or amylose-free starch in Indonesia. Transgenic Res., 21, 39–50. DOI: 10.1007/s11248-011-9507-9

Kuan-Te Li, Moulin, M., Mangel, N., Albersen, M., Verhoeven-Duif, N. M., Ma, Q., & Vanderschuren, H. (2015). Increased bioavailable vitamin B6 in eld-grown transgenic cassava for dietary su ciency. Nature Biotechnology, 33(10), 1029. DOI: 10.1038/nbt.3318

Lacombe, S., Rougon-Cardoso, A., Sherwood, E., Peeters, N., Dahlbeck, D., & van Esse, H. P. (2010). Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat. Biotechnol., 28, 365–369. DOI: 10.1038/ nbt.1613

Montagnac, J. A., Davis, C. R., & Tanumihardjo, S. A. (2009). Nutritional value of cassava for use as a staple food and recent advances for improvement. Comprehensive Reviews in Food Science and Food Safety., 8, 181–194.

Muhiddin, Nurhayani, H., Juli, N., & Aryantha, I. N. P. (2009). Peningkatan kandungan protein kulit umbi ubi kayu melalui proses fermentasi. Jurnal Matematika & Sains, 6(1), 1–12.

Ogwok, E., Odipio, J., Halsey, M., Gaitan-Solis, E., Bua, A., & Taylor, N. (2012). Transgenic RNA interference (RNAi)-derived eld resistance to cassava brown streak disease. Mol. Plant Pathol., 13, 1019–1031. DOI: 10.1111/j.1364-3703.2012.00812.x

Reilly, K., Bernal, D., Cortes, D. F., Gomez-Vasquez, R., Tohme, J., & Beeching, J. R. (2007). Towards identifying the full set of genes expressed during cassava post-harvest phys- iological deterioration. Plant Mol. Biol., 64, 187–203. DOI: 10.1007/s11103-007-9144-0

Rudi, N., Norton, G. W., Alwang, J., & Asumugha, G. (2010). Economic impact analysis of marker-assisted breeding for resistance to pests and postharvest deterioration in cassava. Afr. J. Agric. Resour. Econ., 4, 110–122.

Rukmana, R. (1997). Ubi kayu, budi daya dan pascapanen. Yogyakarta: Penerbit Kanisius.

Rukmana, R. (2002). Usaha tani ubi kayu. Yogyakarta: Penerbit Kanisius.

Rukriani, E., Na , A., Yulianti, L. D., & Subagio, A. (2013). Identi kasi potensi MOCAF (modi ed cassava our) sebagai bahan pensubstitusi teknis terigu pada industri kecil dan menengah di Jawa Timur. Pangan, 22(3), 229–240.

Saleh, N., Rahayu, M., Indiati, A. W., Radjit, S. R., & Wahyuningsih, S. (2013). Hama, penyakit dan gulma pada tanaman ubi kayu: identi kasi dan pengendaliannya. Jakarta: IAARD Press, Badan Penelitian dan Pengembangan Pertanian

Sari, H. A., & Widjanarko, S. B. (2015). Karakteristik kimia bakso sapi (kajian proporsi tepung tapioka: tepung porang dan penambahan NaCl). Jurnal Pangan dan Agroindustri, 3(3), 784–792.

Sayre, R., Beeching, J., Cahoon, E., Egesi, C., Fauquet, C., & Fellman, J. (2011). The BioCassava plus program: Bioforti cation of cassava for sub-Saharan Africa. Annu. Rev. Plant Biol., 62, 251–272. DOI: 10.1146/annurev-arplant-042110-103751

Steenkamp, V., & McCrindle, C. M. (2014). Production, consumption and nutritional value of cassava (Manihot esculenta Crantz) in Mozambique: An overview. Journal of Agricultural Biotechnology and Sustainable Development. 6(3), 29–38.

Studart, M. T., Titiz, O., Raschle, T., Forster, G., Amrhein, N., & Fitzpatrick T. B. (2005). Vitamin B6 biosynthesis in higher plants. PNAS, 102(38), 13687–13692.

Suhartina. (2005). Deskripsi varietas unggul kacang-kacangan dan umbi-umbian. Balai Penelitian Tanaman Kacang-kacangan dan Umbi-umbian, Malang.

Supatmi, & Sudarmonowati, E. (2012). Improved regeneration, acclimatization and shoot cutting production of “Gebang” cassava derived from irradiated in vitro shoots. Annales Bogorienses, 16(2), 7–12.

Suwarto, Sulistyono, E., & Prastowo, G. (2018). Respons agronomi tiga varietas ubi kayu pada berbagai tingkat kadar air tanah. Jurnal Ilmu Pertanian Indonesia, 23, 44–51.

Taylor, T., Gaitán-Solís, E., Moll, T., Trauterman, B., Jones, T., & Pranjal, A. (2012). A high-throughput platform for the production and analysis of transgenic cassava (Manihot esculenta) plants. Trop. Plant Biol., 5, 127–139. DOI: 10.1007/s12042-012- 9099-4

Vanderschuren, H., Alder, A., Zhang, P., & Gruissem, W. (2009). Dose dependent RNAi-me- diated gemini virus resistance in the tropical root crop cassava. Plant Mol. Biol., 70, 265–272. DOI: 10.1007/s11103-009-9472-3

Wahyu, M. K. (2009). Pemanfaatan pati singkong sebagai bahan baku edible lm. (Skripsi). Fakultas Teknologi Industri Pertanian, Universitas Padjajaran, Bandung.

Wargiono, J., & Ispandi, A. (2002). Cassava agronomy research and its contribution to a second food system in Indonesia. Dalam R. H. Howeler, Cassava research and development in Asia: Exploring new opportunities for an ancient crops. Proceedings of 7th Regional Workshop, Bangkok, Thailand, 28 Oktober 2002. hlm. 174–182.

Wargiono, J., Hasanuddin, A., & Suyamto. (2006). Teknologi produksi ubi kayu mendukung industri bioetanol. Bogor: Puslitbangtan.

Wargiono, J., Widodo, Y., & Utomo, W.H. (2001). Cassava agronomy research and adoption of improved practices in Indonesia. Dalam R. H. Howeler & S. L. Tan (Ed.), Cassava‘s potential in Asia in the 21st century: Present situation and future research and development needs. Proceedings of 6th Regional Workshop, Ho Chi Minh City, 21–25 Februari, 2000.

Wijandi. (1976). Ilmu pengetahuan umbi-umbian. Bogor: Departemen Teknologi Hasil Pertanian IPB.

Zainuddin, I., Schlegel, K., Gruissem, W., & Vanderschuren, H. (2012). Robust transformation procedure for the production of transgenic farmer-preferred cassava cultivars. Plant Methods, 8, 24. DOI: 10.1186/1746-4811-8-24

Zhang, P., Wang, W. Q., Zhang, G. L., Kaminek, M., Dobrev, P., Xu, J., & Gruissem, W. (2010). Senescence-inducible expression of isopentenyl transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in cassava. J. Integr. Plant Biol., 52, 653–669. DOI: 10.1111/j.1744-7909.2010.00956.x

Zidenga, T., Leyva-Guerrero, E., Moon, H., Siritunga, D., & Sayre, R. (2012). Extending cassava root shelf life via reduction of reactive oxygen species production. Plant Physiol., 154, 1396–1407. DOI: 10.1104/pp.112.200345

Afonso, S. D. G., da Silva Ledo, C. A., Moreira, R. F. C., Silva, S. O., de Jesus Leal, V. D., & da Silva Conceicao, A. L. (2014). Selection of descriptors in a morphological characteristics considered in cassava accessions by mean of multivariate techniques. Journal of Agriculture and Veterinary Science, 7(1), 13–20.

Alves, A. A. C. (2002). Cassava botany and physiology. Dalam Hillocks, R. J., Thresh, J. M. & Bellotti, A. C., Cassava: Biology, production and utilization. CAB International, Bahia, Brazil. 1, 67–89.

Anonim. (2017). Bank plasma nutfah ubi kayu ubi kayu. Diakses pada Desember 2017 dari / http:// biogen.litbang.pertanian.go.id/pro l/fasilitas/ bank-plasma-nutfah/.

Barrera, S. E., Marín, J. A., Ospina, C., Santos Meléndez, L.G, Morante, N., Moreta Mejía, D. E., Moreno, Y., & Fregene, M. A. (2007). Molecular marker-assisted breeding for resistance to the cassava mosaic disease in Latin America cassava gene pools.Centro Internacional de Agricultura Tropical (CIAT), Cali, Kolombia.

Beebe, S. E., Iglesias F., & Ariel, C. (1999). Molecular characterization of the CIAT bean and cassava core collections. Dalam Johnson, R. C., Hodgkin, Toby (eds.)., Core collections for today and tomorrow. Rome: International Plant Genetic Resources Institute (IPGRI).

Benesi, I. R. M., Labuschagne, M. T., Herselman, L., & Mahungu, N. (2010). Ethnobotany, morphology and genotyping of cassava germplasm from Malawi. J. Biol. Sc., 10, 616–623.

Bhattacharjee, R., Dumet, D., Ilona, P., Folarin, S., & Franco, J. (2012). Establishment of a cassava (Manihot esculenta Crantz) core collection based on agro-morphological descriptors. Plant Genetic Resources, 10(2), 119–127.

Blair, M. W., Fregene, Martin. A., Beebe, Stephen. E., Ceballos, & Hernán. (2007). Marker-as- sisted selection in common beans and cassava. Dalam Guimaraes. Perpétuo, Ruane, Scherf, Beate D., Sonnino, & Dargie, J. D. (eds.), Marker-assisted selection: Current status and future perspectives in crops, livestock, forestry and sh. Rome: Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO), hlm. 81–115.

Bredeson, J. V., Lyons, J. B., Prochnik, S., Wu, G. A., Ha, C. M., Edsinger-Gonzales, E., ... & Rokhsar, D. S. (2016). Sequencing wild and cultivated cassava and related species reveals extensive interspeci c hybridization and genetic diversity. Nature Biotechnology, 34, 562–570.

Carmo, C. D., da Silva, M. S., Oliveira, G. A. F., & de Oliveira, E. J. (2015). Molecular-assisted selection for resistance to cassava mosaic disease in Manihot esculenta Crantz. Scientia Agricola, 72(6), 520–527.

Carvalho, L. J. C. B., & Schaal, B. A. (2001). Assessing genetic diversity in the cassava (Manihot esculenta Crantz) germplasm collection in Brazil using PCR-based markers. Euphytica 120,133–142.

Ceballos, H., Iglesias, C. A., Pérez, J. C. & Dixon, A. G. O. (2004). Cassava breeding: opportunities and challenges. Plant Mol. Biol., 56, 503–515.

CIAT. (2004). Annual Report IP3. Improved cassava for the developing world. CIAT, Cali, Kolombia.

CIAT. (2017). Conservation of cassava genetic resources. Diakses pada 12 September 2018 dari http://cropgenebank.sgrp.cgiar.org/index.php/crops-mainmenu-367/ cassava-mainmenu-232/conservation- mainmenu-213.

Colombo, C., Second, G., & Charrier, A. (2000). Genetic relatedness between cassava (Manihot esculenta Crantz) and M. fabellifolia and M. peruviana based on both RAPD and AFLP markers. Genet. Mol. Biol, 23(2), 189–199.

Dahamaruddin, L., & Sirappa, M. P. (2009). Eksplorasi dan konservasi ex situ plasma nutfah ubi kayu sebagai upaya mewujudkan ketahanan pangan di Maluku. Jurnal Budi daya Pertanian, 5(1), 61–67.

Departemen Pertanian. (2007). Panduan pengujian individual (PPI) ubi kayu. Diakses pada Desember 2017 dari http://ppvt.setjen.pertanian.go.id.

FAO. (2017). E ect of cassava production on biodiversity. Agriculture and Consumer Protection. Diakses pada 16 Juli 2018 dari http://www.fao.org/docrep/007/y2413e/ y2413e0c.htm#.

Fathoni, A., Zainuddin, I., & Sudarmonowati, E. (2012). Establishing standardized Agrobacterium-mediated friable embryogenic callus (FEC) transformation and FEC induction of cassava (Manihot esculenta Crantz) in Indonesia. International Conference on Biotechnology. Research Center for Biotechnology, Indonesian Institute of Sciences LIPI. Bogor. 13–14 Nopember 2012.

Ferguson, M., Rabbi, I., & Kim, D. J. (2012). Molecular markers and their application to cassava. Breeding: Past, present and future. Tropical Plant Bio., 5, 95–109.

Fregene, M., Bernal, A., Duque, M., Dixon, A., ·& Tohme, J. (2000). AFLP analysis of African cassava (Manihot esculenta Crantz) germplasm resistant to the cassava mosaic disease (CMD). Theor. Appl. Gene., 100, 678–685.

Fukuda, W. M. G., Guevara, C. L., Kawuki, R., & Ferguson, M. E. (2010). Selected morpho- logical and agronomic descriptors for the characterization of cassava. International Institute of Tropical Agriculture (IITA),1–28.

http:// biogen.litbang.pertanian.go.id/pro l/fasilitas/ bank-plasma-nutfah/.

Hahn, S. K., Bai, K. V., & Asiedu, R. (1990). Tetraploids, triploids, and 2n pollen from diploid

interspeci c crosses with cassava. Theor. Appl. Genet., 79(4), 433–439.

Hahn, S. K., Terry, E. R. & Leuschner, K. (1980). Breeding cassava for resistance to cassava

mosaic disease. Euphytica, 29(3), 673–683.

Hartati, Aryaningrum, P. D., Wahyuni, Hartati, N. S., & Sudarmonowati, E. (2015). Karakterisasi morfologi dan uji organoleptik 11 genotip ubi kayu terseleksi untuk pangan. Prosiding Seminar Nasional Hasil Penelitian Unggulan Bidang Pangan Nabati “Bioresources Untuk Pembangunan Ekonomi Hijau”. Bogor, 25 September 2014, 391–405.

Hartati & Hartati, N. S. (2016). E siensi grafting enam genotip ubi kayu hasil seleksi untuk mendukung peningkatan produksi. Prosiding Kongres Teknologi Nasional. Jakarta, 25–27 Juli 2016, 805–813.

Hartati, N. S., Fitriani, H., Supatmi, & Sudarmonowati, E. (2012). Karakter umbi dan nutrisi tujuh genotip ubi kayu (Manihot esculenta). Jurnal Agricola, 2, 101–110.

Hartati, N. S., Sudarmonowati, E., Rahman, N., Hartati, R., Hartati, Damayanti, T., & Rijadi, S. J. (2003). Seleksi genotip ubi kayu Indonesia dengan komposisi pati tertentu berdasarkan marka genetik. Laporan Teknik Proyek Penelitian Bioteknologi Tahun 2003. Pusat Bioteknologi, LIPI, 142–163.

Hershey, C. H. (2010). Background on a global conservation strategy for cassava and wild Manihot species. Diakses pada 16 Juli 2018 dari https://www.croptrust.org/ wp-content/uploads/2014/12/cassava-strategy.pdf.

Kawuki, R. S., Ferguson, M., Labuschagne, M., Herselman, L., & Kim, D. J. (2009). Identi- cation, characterisation and application of single nucleotide polymorphisms for diversity assessment in cassava (Manihot esculenta Crantz). Mol. Breed., 23, 669–684.

Kawuki, R. S., Ferguson, M., Labuschagne, M., Herselman, L., Orone, J., Ralimanana, I., ... & Obiero, H. (2011). Variation in qualitative and quantitative traits of cassava germplasm from selected national breeding programmes in sub-Saharan Africa. Field Crops Res., 122, 151–156.

Lambardi M., Roncasaglia R., Previati A., de Carlo A., Dradi G., da Re F., & Calamai L. (2006). In vitro slow growth storage of fruit rootstocks inside gas-tight or gas-permeable containers. Acta Hortic. 725, 483–488.

Lindeboom, N., Chang, P. R., & Tyler, R. T. (2004). Analytical, biochemical and physico- chemical aspects of starch granule size, with emphasis on small granule gtarches: A review. Starch/Stärke, 56, 89–99.

Marmey, P., Beeching, J. R., Hamon, S., & Charrier, A. (1993). Evaluation of cassava (Manihot esculenta Crantz) germplasm collections using RAPD markers. Euphytica, 74(3), 203–209.

Mba, R. E. C., Stephensen, P., Edwards, K., Melzer, S., Nkumbira, J., Gullberg, U., ... & Fregene, M.. (2001). Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: Towards an SSR-based molecular genetic map of cassava. Theor. Appl. Genet., 102, 21–31.

McKey. D., Elias, M., Pujol, B., & Duputie, A. (2010 ). The evolutionary ecology of clonally propagated domesticated plants. New Phytologist, 186, 318–332.

Mazette, T. F., Blumer, C. P., & Veasey, E. A. (2013). Morphological and molecular diversity among cassava genotypes. Pesq. Agropec. Bras, 48(5), 510–518.

Montero-Rojas, M., Correa, A. M., & Siritunga, D. (2011). Molecular di erentiation and diversity of cassava (Manihot esculenta) taken from 162 locations across Puerto Rico and assessed with microsatellite markers. AoB Plants, 1–13.

Nassar, N. M. A. (2000). Wild cassava, Manihot spp.: Biology and potentialities for genetic improvement genetics and molecular biology. Genet. Mol. Biol, 23(1), 201–212.

Nassar, N., & Ortiz, R. (2010). Breeding cassava. Food Science. Scienti c American, 78–84.

Oliveira, E. J., Ferreira C. F., Santos V. S., & Oliveira G. A. F. (2014). Development of a cassava core collection based on single nucleotide polymorphism markers. Genet. Mol. Res, 13(3), 6472–6485.

Oliveira, E. J., Ferreira, C. F., da Silva Santos, V., de Jesus, O. N., Oliveira, G. A., & da Silva, M. S. (2014). Potential of SNP markers for the characterization of Brazilian cassava germplasm. Theor. Appl. Genet., 127(6), 1423–1440.

Pereira, A. V., Vencovsky, R., & Cruz, C. D. (1992). Selection of agronomical and botanical descriptors for the characterization of cassava (Manihot esculenta Crantz.) germplasm. Brazilian Journal of Genetics, 115 –124.

Prochnik, S., Marri, P. R., Desany, B., Rabinowicz, P. D., Kodira, C., Mohiuddin, M., ... & Rousley, S. (2012). The Cassava genome: Current progress, future directions. Theor. Plant Biol., 5(1), 88–94.

Raji, A., Anderson, J., Kolade, O., Ugwu, C., Dixon, A., & Ingelbrecht, I. (2009). Gene-based microsatellites for cassava (Manihot esculenta Crantz): Prevalence, polymorphisms, and cross-taxa utility. BMC Plant Biol., 9, 118.

Ribeiro, M. N. O., Carvalho, S. P., Santos, J. B., & Antonio, R. P. (2011). Genetic variability among cassava accessions based on SSR markers. Crop Breeding and Applied Biotech- nology, 11, 263–269.

Rogers, D., & Appan. (1973). Manihot, Manihotoides, Euphorbiaceae. Dalam Nassar, N. M. A. (2000). Cytogenetics and evolution of cassava (Manihot esculenta Crantz). Genetics and Molecular Biology, 23(4), 1003–1014.

Da Silva, M. J. (2015). Two new wild casava species (Manihot, Euphorbiaceae) from the Brazilian Cerrado. Phytotaxa, 213(20), 131–139.

Soto, J. C., Ortiz, J. F., Perlaza-Jiménez, L., Vásquez, A. X., Lopez-Lavalle, L. A. B., Mathew, B., ... & López, C. E. (2015). A genetic map of cassava (Manihot esculenta Crantz) with integrated physical mapping of immunity-related genes. BMC Genomics, 16(1), 190.

Soyode, F. O., & Oyetunji, O. J. (2009). Use of morphological characters to identify Cassava Mosaic Disease and Cassava Bacterial Blight resistance. African Crop Science Journal, 25–39.

Sraphet, S., Boonchanawiwat, A., Thanyasiriwat, T., Boonseng, O., Tabata, S., Sasamoto, S., ... & Triwitayakorn, K. (2011). SSR and EST-SSR-based genetic linkage map of cassava (Manihot esculenta Crantz). Theor. Appl. Genet., 122, 1161–1170.

Sudarmonowati, E., & Henshaw, G. G. (1990). Cryopreservation of cassava somatic embryos. Abstract, 7th Intl. Congr. for Plant Tissue and Cell Culture. Amsterdam, 378.

Sudarmonowati, E., Hartati, N. S., Hartati, & Sukmarini, L. (2007). Amylose content variation of Indonesian cassava genotypes and its correlation with RAPD and AFLP markers. Proceedings First International Meeting on Cassava Breeding, Biotechnology and Ecology., 87–98.

Wangsomnuk, P. P., Ruttawat, B., & Wongtiem, P. (2013). Identi cation of genetically distinct cassava clones from on-farm plantations to widen the Thai cassava. Breeding gene pool. American Journal of Plant Sciences, 4, 1574–1583.

Zacarias, A. M., Botha, A. M., Labuschagne, M. T., & Benesi, I. R. M. (2004). Characterization and genetic distance analysis of cassava (Manihot esculenta Crantz) germplasm from Mozambique using RAPD ngerprinting. Euphytica, 138, 49–53.

Zhang, S., Ma, P., Wang, H., Lu, C., Chen, X., Xia, Z., ... & Wang, W. (2014). Genomics approaches to unlock the high yield potential of cassava, a tropical model plant. Front. Agr. Scie. Eng, 1(4), 259–266.

Zhu, F. (2015). Composition, structure, physicochemical properties, and modi cations of cassava starch. Carbohydrate Polymers, 122, 456–480.

Adetunji, A. R., Isadare, D. A., Akinluwade, K. J., & Adewoye, O. O. (2015). Waste-to-wealth applications of cassava-A review study of industrial and agricultural applications. Advances in Research, 4(4), 212–229.

Akintonwa, A., Tunswaashe, O., & Onifade, A. A.( 1994). Fatal and non-fatal acute poisoning attributed to cassava based meal. Acta Horticul., 375, 285–288.

Antia, B. S., Akpan, E. J., Okon, E. A., & Umoren, I. U. (2006). Nutritive and anti nutritive of evaluation of sweet potatoes leaves. Pakistan Journal of Nutrition, 5, 166–168.

Balagopalan, C., Padmaja, G., Nanda S. K., & Moorthy S. M. (1988). Cassava in food, feed, and industry. Boca Raton, Florida USA: CRC Press.

Bantacut, T. (2010). Ketahanan pangan berbasis cassava. Pangan, 19(4), 3–13.

Barratt, N., Chitundu, D., Dover, O., Elsinga1, J., Eriksson, S., Guma, L., ... & Stevens, T. (2006). Cassava as drought insurance: Food security implications of cassava trials in Central Zambia. Agrekon, 45(1), 106–123.

Bradbury, J. H., & Denton, I. C. (2011). Mild methods of processing cassava leaves to remove cyanogens and conserve key nutrients. Food Chemistry, 127, 1755–1759.

Bradbury, M. G., Egan, S. V., & Bradbury, J. H. (1999). Picrate paper kits for determination of total cyanogens in cassava roots and all forms of cyanogens in cassava products. Journal of the Science of Food and Agriculture, 79(4), 593–601.

Burns, A. E., Bradbury, J. H., Cavagnaro, T. R., & Gleadow, R. M. (2012). Total cyanide content of cassava food products in Australia. Journal of Food Composition and Analysis 25(1), 79–82.

Cardoso, A. P., Mirione, E., Ernesto, M., Massaza, F., Cli , J., Haque, M. R., & Bradbury, J. H. (2005). Processing of cassava roots to remove cyanogens. Journal of Food Composition and Analysis, 18, 451–460.

Chávez, A. L., Sánchez, T., Jaramillo, G., Bedoya, J. M., Echeverry, J., Bolaños, E. A., Ceballos, H., & Iglesias, C. A. (2005). Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica, 143, 125–133.

Claves, A. I., Bedoya, J. M., Sanchez, T., Iglesias, C., Ceballos, H., & Roca, W. (2000). Iron, carotene, and ascorbic acid in cassava roots and leaves. Food and Nutrition Bulletin, 21(4), 410–413.

Conn, E. E. (1979). Cyanogenic glycosides. Dalam A. Neuberger, & T. H. Jukes (eds.). International Review of Biochemistry: Biochemistry of Nutrition, 27, 21–43. Baltimore: University Park Press.

Conn, E.E. (1969). Cyanogenic glycosides. J. Agric. Food Chem., 17(3), 519–526.

Delange, F., Ekpechi, L. O., & Rosling, H. (1994). Cassava cyanogenesis and iodine de ciency

disorders. Acta Horticulturae 375, 289–293.

Deptan. (2007). Panduan pengujin individual kebaruan, keunikan, keseragaman dan kestabilan

Ubi kayu. Pusat Perlindungan Varietas Tanaman. Hlm. 22.

Dhas, P. K., Chitra, P., Jayakumar, S., & Mary, A. R. (2011). Study of the e ects of hydrogen cyanide exposure in cassava workers. Indian Journal of Occupational and Environmental Medicine, 15(3), 133–136.

Drochioiu, G., Arsene, C., Murariu, M., & Oniscu, C. (2008). Analysis of cyanogens with resorcinol and picrate. Food and Chemical Toxicology, 46, 3540–3545.

Emmanuel, O. A., Clement, A., Agnes, S. B., Chiwona-Karltun, L., & Drinah, B. N. (2012). Chemical composition and cyanogenic potential of traditional and high yielding CMD resistant cassava (Manihot esculenta Crantz) varieties. International Food Research Journal, 19(1), 175–181.

Ernesto, M., Cardoso, A. P., Nicala, D., Mirione, E., Massaza, F., Cli , J., Haque, M. R., & Bradbury, J. H. (2002). Strategy for the elimination of konzo in Mozambique. Roots, 8(1), 8–11.

Ezeigbo, O. R., Ukabi, C. F., Ike-Amadi, C. A. & Ekaiko, M. U. (2015). Determination of starch and cyanide contents of di erent species of fresh cassava tuber in Abia State, Nigeria. British Biotechnology Journal, 6(1), 10–15.

FAO/ WHO. (1995). Codex Standard for Edible Cassava Flour. Codex Standard 176-1989. Rome, Italy: Food and Agriculture Organisation and World Health Organisation of the United Nations.

Fukuda, W. M. G., Guevara, C. L., Kawuki, R., & Ferguson, M. E. (2010). Aelected morpho- logical and agronomic descriptors for the characterization of cassava. Ibadan, Nigeria: International Institute of Tropical Agriculture (IITA). 19 pp.

Garcia, M., & Dale, N. (1999). Cassava root meal for poultry. Applied Poultry Science, 8,132–137.

Grace, M. R. (1997). Plant Production and Protection Series Number 3. Rome: FAO.

Halstrøm, F., & Møller, K. O. (1945). The content of cyanide in human organs from cases of poisoning with cyanide taken by mouth; with a contribution to the toxicology of cyanides. Acta Pharmacol Toxicol, 1(1), 18–28.

Haque, M. R., & Bradbury, J. H. (1999). Simple method for determination of thiocyanate in urine. Clinical Chemistry, 45, 1459–1464.

Islam, A. T. M. T., Prodhan, A. K. M. A., & Fakir, M. S. A. (2007). Morphological di erences in three cassava morphotypes. J. Agrofor. Environ., 1(2), 113–116.

Khieu, B., Chhay, T., Ogle, R. B., & Preston, T. R. (2005). Research on the use of cassava leaves for livestock feeding in Cambodia. Proceeding of the regional workshop on “The Use of Cassava Roots and Leaves for On- Farm Animal Feeding”, Hue, Vietnam 2005, 17–19.

King, N. L. R., & Bradbury, J. H. (1995). Bitterness of cassava: Identi cation of a new apiosyl glucoside and other compounds that afFECt its bitter taste. Journal of the Science of Food and Agriculture, 68, 223–230.

Kurniawati, S., Hartati, & Hartati, N. S. (2016). Pengelolaan terpadu ubi kayu lokal Maluku Tenggara melalui aplikasi pupuk organik hayati, pengolahan mocaf enbal dan inisiasi produksi bibit kultur jaringan. Prosiding Kongres Teknologi Nasional 2016, 512–524.

Kurniawati, S., Hartati, N. S., Hartati, Taryana, N., & Nawawi. (2015). Peningkatan nilai ekonomi ubi kayu melalui pengelolaan terpadu budi daya dan pascapanen untuk mendukung penyediaan bahan pangan nasional berkualitas tinggi di daerah maluku tenggara. Laporan Akhir Tahun Kegiatan Agro-Marine Techno Park–LIPI, Pusat Pene- litian Oseanogra Tahun Anggaran 2015. Diakses pada 11 November 2017 dari http:// repository.usp.ac. /4852/1/Report Cyanide_in_Cassava_and_Cassava_Products2.pdf

Männel-Croisé, C., Probst, B., & Zelder, F. (2009). A straightforward method for the colori- metric detection of endogenous biological cyanide. Anal. Chem., 81(22), 9493–9498.

Mariyono, Anggraeny, Y. N., & Kiagega, L. (2008). Teknologi alternatif pemberian pakan sapi potong untuk wilayah industri bagian Timur. Pros. Seminar Nasional Sapi Potong. Palu, 24 November 2008. BPTP Sulawesi Tengah, 151–159.

Montagnac, J. A., Davis, C. R., & Tanumihardjo, S. A. (2009). Processing techniques to reduce toxicity and antinutrients of cassava for use as a staple food. Comprehensive Reviews in Food Science and Food Savety, 8, 17–27.

Monte, J. I. C. (2013). Antimicrobial activity of selected phytochemicals against Escherichia coli and Staphylococcus aureus cells and bio lms. Thesis. Faculdade de Engenha- ria-Universidade do Porto. FEUP.

National Research Council. (2002). Acute exposure guideline levels for selected airborne chemicals: Volume 2. Washington, DC: The National Academies Press. https://doi. org/10.17226/10522.

Nirwanto, W. 2012. Karakteristik morfologi dan pola pita isozim pada ubi kayu (Manihot esculenta Crantz.) tinggi beta karoten. (Skripsi). Fakultas MIPA Program Studi Biologi, Depok.

Osuntokun, B. O. (1973). Ataxic neuropathy associated with high cassava diets in West Africa. In Nestel, B., MacIntyre, R. (Eds.), Chronic Cassava Toxicity. Ottawa, Kanada: International Development Reseach Centre, 127–138.

Osuntokun, B. O. (1994). Chronic cyanide intoxication of dietary origin and a degenerative neuropathy in Nigerians. Acta Horticulturae, 375, 311–321.

Preston, T. R., Rodrigues, L., & Borin, K. (2000). Associations of cassava and legume trees as perennial forage crops for livestock. In: T.R. Preston and R.B. Ogle (Eds.). Workshop-seminar “making better use of local feed resources” January 2000. SARE-UAF, UAF, Ho Chi Minh City, Vietnam.

Ravindran, V. (1991). Preparation of cassava leaf products and their use as animal feed. Roots, tubers, plantains and bananas in animal feeding (Editors: D Machin and Solveig Nyvold). FAO Animal Production and Health Paper, 95, 111–122.

Richardson, K. V. A. (2013). Quality characteristics, root yield and nutrient composition of six cassava (Manihot esculenta Crantz) varieties. Gladstone Road Agricultural Center Crop Research Report 18, 1–13.

Tonukari, N. J. (2004). Cassava and the future of starch. Electronic Journal of Biotechnology, 7(1), 5–8.

Vetter, J. (2000). Plant cyanogenic glycosides. Toxicon, 38, 11–36.

White, W. L. B., Arias-Garzon, D. I., McMahon, J. M. & Sayre, R. T. (1998). Cyanogenesis in Cassava: The role of hydroxynitrile lyase in root cyanide production. Physiol, 116, 1219–1225.

Wilson, W. M. & Dufour, D. L. (2002). Why “bitter” cassava? The productivity of “bitter” and “sweet” cassava in a Tukanoan Indian settlement in the Northwest Amazon. Economic Botany, 56(1), 49–57.

Zagrobelny, M., Bak, S., Rasmussen, A. V., Jørgensen, B., Naumann, C. M. & Møller, B. L. (2004). Cyanogenic glucosides and plant-insect interactions. Phytochemistry 65, 293–306.

Zelder, F. & Tivana, L. (2015). Corrin-based chemosensors for the ASSURED detection of endogenous cyanide. Org. Biomol. Chem., 13, 14–17.

Armini, N. M., Wattimena, G. A., & Gunawan, L. W. (1992). Perbanyakan tanaman. Dalam G. A. Wattimena, N. A. Mattjik, E. Samsudin, M. A. Wiendi, & A. Ernawati (ed.) Bioteknologi tanaman. Bogor: Laboratorium Kultur Jaringan Tanaman, Pusat Antar Universitas, IPB.

Astutik, A. (2007). Kajian zat pengatur tumbuh dalam perkembangan kultur jaringan. Buana Sains, 7(2), 113–121.

Amiri, E. A. (2006). In vitro techniques to study the shoot-tip grafting of Prunus avium L. (cherry) var. Seeyahe Mashad. Journal of Food, Agriculture & Environment 4(1), 151–154.

Cacai, G. H. T., Adoukonou-Sagbagja, H., Kumulugui, B.S., Ovono, P. O., Houngue, L., & Ahanhanzo, C. 2013. Eradication of cassava (Manihot esculanta) mosaic symptoms through thermotherapy and meristems cultured in vitro. Intl. J. Agron. Plant. Prod. 4, 3697–3701.

Estrada-Luna, A. A., Lopez-Peralta, C., & Cardenas-Soriano, E. (2002). In vitro micrografting and the histology of graft union formation of selected species of prickly pear cactus (Opuntia spp.). Scientia Horticulturae, 92(3–4), 317–327.

Evans, D., & Bravo, A. (1983). Protoplast isolation and culture, technique for propagation and breeding. New York: Macmillan publishing CD.

Evans, D. A., Sharp, W.R., & Medina-Filho, H.P. (1984). Somaclonal variation and gameto- clonal variation. Amer. J. Bot. 71(6), 759–774.

Fathoni, A. (2017). Riset ubi kayu: Status dan prospek pemanfaatannya. Dipresentasikan pada Lokakarya Peran Riset dan Kebijakan untuk Penguatan Rantai Nilai Ekonomi Ubi Kayu Indonesia. Cibinong, 7 September 2017.

Feitosa, T., Bastos, J. L. P., Ponte, L. F. A., Juca, T. L., & Campos, F. A. P. (2007). Somatic embryogenesis in cassava genotypes from the Northeast of Brazil. Braz. Arch. Biol. Technol., 201–206.

Gelvin, S. B., Thomashow, M. F., McPherson, J. C., Gordon, M. P., & Nester, E. W. (1982). Sizes and map positions of several plasmid-DNA-encoded transcripts in octopine-type crown gall tumors. Proceedings of the National Academy of Sciences, 79(1), 76–80.

Lembar Informasi Pertanian (LIPTAN). (1995). Balai Informasi Pertanian (BIP) Irian Jaya. 1994. Pengolahan tanah minimum (minimum illage). Jayapura: Balai Informasi Pertanian Irian Jaya.

Gunawan, L. W. (1988). Teknik kultur jaringan. Bogor: Laboratorium Kultur Jaringan Tanaman. Pusat Antar Universitas, Institut Pertanian Bogor.

Gunawan, L. W., Mattjik, N. A., Syamsudin, E., Wiendi, N. M. A., & Ernawati, A. (1992). Bioteknologi tanaman. Bogor: Pusat Antar-Universitas Bioteknologi, Institut Pertanian Bogor.

Gamborg, O. L., & Phillips, G. C. (1995). Media preparation and handling. Dalam Gamborg & Phillips (Eds.). Plant cell, tissue, and organ culture: Fundamental methods, 21–34. Berlin: Springer-Verlag.

George, E. F., & Sherrington, P. D. (1993). Factors a ecting growth and morphogenesis. Plant propagation by tissue culture. London: Exegetics Ltd, 231–271.

George, E. F., Hall, M. A., & Klerk, G. D. (2008). Plant propagation by tissue culture. 3rd ed. Wageningan: Springer..

Gebhardt, K., & Goldbach, H. (1988). Establishment, graft union characteristics and growth of Prunus micrografts. Physiologia Plantarum, 72(1), 153–159.

Green, C. E., & Phillips, R. L. (1975). Plant Regeneration from Tissue Cultures of Maize 1. Crop Science, 15(3), 417–421.

Hankoua, B. B., Taylor, N. J., Ng, S. Y. C., Fawole, I., Puonti-Kaerlas, J., Padmanabhan, C., ... & Fondong, V. N. (2006). Production of the rst transgenic cassava in Africa via direct shoot organogenesis from friable embryogenic calli and germination of maturing somatic embryos. Afr. J. Biotechnol. 5,1700–1712.

Harahap, I. S. K., Saito, T., San, L. P., Sasaki, N., Nurputra, D. K. P., Yuso , S., ... & Takeshima, Y. (2012). Valproic acid increases SMN2 expression and modulates SF2/ASF and hnRNPA1 expression in SMA broblast cell lines. Brain and Development, 34(3), 213–222.

Hartati, N. S., Rahman, N. Fitriani, H., & Sudarmonowati, E. (2013). Koleksi kultur in vitro ubi kayu (Manihot esculanta Crantz.) sebagai material perakitan bibit unggul. Dalam Sutanto, R. U. M. S., Soedjanaatmadja, U. Supriatman, & T. Panji (Eds.). Seminar Nasional Riset Pangan Obat-obatan dan Lingkungan untuk Kesehatan. Bogor, 27–28 Juni 2013.

Hartmann, H. T., Kester, D.E., & Davies, (1997). Plant propagation, principles and practise, Sixth Edition. New Jersey: Practice hall International Inc.

Hendaryono, D. P. S., & Wijayani, A. (1994). Teknik kultur jaringan. Yogyakarta: Penerbit Kanisius.

Herrara-Estrella, L. (1983). Expression of chimaeric genes transferred into plant cells using a ti-plasmid-derived vector,nature. International Weekly Journal of Science. 303(5914), 209–213.

Holbrook, N. M., Shashidar, V. R., & James, R. A. (2002). Stomatal control in tomato with ABA-de cient roots: Response of grafted plants to soil drying Ex. 7 Journal of Experimental Botany, 53(373), 1503–1514. https://doi.org/10.1093/jexbot/53.373.1503 Published: 01 June 2002

Munnns, H. T., Kester, D. E., & Davis-Jr., F. T. (1990). Plant propagation: Principle and practices. New Jersey: Prentice-Hall International, Inc.

Kala, C. P., & Mathur, V. B. (2002). Patterns of plant spesies distribution in the trans-Hima- layan region of Ladakh, India. Journal of Vegetation Science 13(6), 751–754.

Katuuk, J. R. P. (1989). Teknik kultur jaringan dalam mikropropagasi tanaman. Jakarta: P2 LPTK.

Kharisma, G. G. (2011). Pengaruh suplemen organik terhadap induksi kalus dan regenerasi tunas pada kalus biji padi (Oryza sativa L.) CV Ciherang secara in vitro. (Disertasi Doktor), Universitas Atmajaya, Yogyakarta.

Kumari, B. D. R., Settu, G., & Sujatha. (2006). Somatic embryogenesis and plant regeneration. IJBT. 5, 243–345.

Kurniati, R., Purwito, A., Wattimena, G. A., Marwoto, B., & Supenti, S. (2016). Induksi Kalus dan bulblet serta regenerasi tanaman lili varietas sorbon dari tangkai sari bunga. Jurnal Hortikultura, 22(4), 303–308.

Lestari, A. P. (2009). Pengembangan pertanian berkelanjutan melalui substitusi pupuk anorganik dengan pupuk organik. Jurnal Agronomi, 13(1), 38–44.

Lestari, E., Dewi, I. S., Yunita, R., & Sukmadjaja, D. (2016). Induksi mutasi dan keragaman somaklonal untuk meningkatkan ketahanan penyakit blas daun pada padi Fatmawati. Buletin Plasma Nutfah 16(2), 96–102.

Letham, D. S. (1963). Zeatin, a factor inducing cell division isolated from Zea mays. Life sciences, 2(8), 569–573.

Lieberman, S., & Bruning, N. (1990). The real vitamin & mineral book. New York: Avery Group. ISBN 0-89529-769-8.

Mapayi, E. F., Ojo, D. K., Oduwaye, O. A., & Porbeni, J. B. O. (2013). Optimization of in vitro propagation of cassava (Manihot esculanta Crantz.) genotypes. J. Agric. Sci. 5, 261–269.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473–497.

Mushiyama, I., Hakizimana, E., Gashaka, G., Sallah, P. Y. K., Kalisa, S., Gatunzi, F., ... & Gahakwa, D. (2011). Micro-propagation of disease resistant cassava variety in Rwanda. Rwanda J., 24, 49–57.

Mustahib, T. (2012). Teknik kultur jaringan. Agroinovasi, 18 April 2012. Balitbang Pertanian. Naz, A. A., Jaskani, M. J., Abbas, H., & Qasim, M. (2007). In vitro studies on micrografting

tecnique in two producecirus free plant. Pak. J. Bot, Vol. 39(5), 1773–1778.

Onay, A., Pirinc, V., Adiyaman, F., Isikalan, C., Tikat, E., & Basaran, D. (2003). In vivo and

in vitro micrografting of pistachio, Pistaciavera L.cv. “Siirt”. Turk. J. Biol., 27, 95–100.

Onuoch, C. I., & Onwibiku, N. I. C. (2007). Micropogation of cassava (Manihot esculanta Crantz.) using di erent concentrations of benylaminopurine (BAP). J. Eng. Appl. Sci. 2, 1229–1231.

Pierik, R. L. M. (1987). In vitro culture of higher plant as in tool. Dalam Propagation of horticultural crops. International Symposium on Propagation of Ornamental Plants. Acta Horticulturae.

Rahman, N., & Alam, S. (2016). Perbanyakan benih ubi kayu secara kultur jaringan. Vigor Balai Besar Pengembangan Pengujian Mutu Benih TPH, Vol. 1/April 2016. ISSN: 1907-6339.

Rahardja, P. C., & Wiryanta, W. (2003). Aneka cara memperbanyak tanaman. Jakarta: AgroMedia.

Roca, W. M., Henry, G., Angel, F., & Sarria, R. (1992). Biotechnology research applied to cassava improvement at the International Center of Tropical Agriculture (CIAT). Dalam Advance in gene technology: Feeding the world in the 21st century. The 1992 Miami Biotechnology Winter Symposium. Miami, USA: IRL Press at Oxford University Press.

Rossin, C. B., & Rey, M. E. C. (2011). E ect of explant source and auxins on somatic embryogenesis of selected cassava (Manihot esculanta Crantz) cultivars. South African J. Bot. 77, 59–65.

Rost, T. L., Barbour, M. G., Stocking, C. R., & Murphy, T. M. (1998). Plant biology. California: Wadsworth Publishing Company.

Sani, H. B. (2007). In vitro propagation of Globba brachyanthera K. Schum. Proceedings Asia Paci c Conference on Plant Tissue and Agribiotechnology (APaCPA), 17, 21.

Shah, D. M., Horsch, R. B., Klee, H. J., Kishore, G. M., Winter, J. A., Tumer, N. E., ... & Siegel, N. R. (1986). Engineering herbicide tolerance in transgenic plants. Science, 233(4762), 478–481.

Soetanto, N. E. (2008). Tepung kasava dan olahannya. Yogyakarta: Penerbit Kanisius.

Sudarmonowati, E., Hartati, R., & Taryana, T. (2002). Produksi tunas, regenerasi dan evaluasi hasil ubi kayu (Manihot esculenta) Indonesia asal kultur jaringan di lapang. Natur Indonesia, 4(2), 96–108.

Sugiyono. (1993). Pengaruh hormon 2.4-D dan BAP terhadap multiplikasi kalus Purwoceng (Pimpinella pruatjan Molkenb) pada kultur aseptis. (Skripsi). Departemen Pendidikan Nasional Fakultas Biologi Universitas Jendral Soedirman, Purwokerto.

Suryana, A. (2009). Dukungan kebijakan pengembangan industri tepung cassava. Paper dipresentasikan pada Lokakarya Nasional Akselerasi Industrialisasi Tepung Cassava untuk Memperkokoh Ketahanan Pangan Nasional. Balai Kartini, Jakarta, 9 Mei 2009.

Suryowinoto, M. (1991). Budi daya jaringan terobosan bermanfaat dalam bioteknologi. Yogyakarta: UGM.

Suwarto. (2009). Peningkatan produktivitas cassava: Analisis kesenjangan produksi potensial dengan produksi riil. Prosiding Lokakarya Nasional: Akselerasi Industrialisasi Tepung Cassava untuk Memperkokoh Ketahanan Pangan Nasional. Jakarta: BULOG dan Fakultas Teknologi Pertanian Institut Pertanian Bogor.

Taji, A. M., Dodd, W. A., & Williams, R. R. (1992). Plant tissue culture practice. Dalam Acram M. Taji, William A. Dodd, Richard. R. Williams. Armidale: N.S.W. University of New England Botany Dept. 1992.

Vasil, I. K. (2008). A history of plant biotechnology: From the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Rep., 27, 1423–1440. DOI 10.1007/s00299-008- 0571-4.

Watimena, G. A. (1989).Zat pengatur tumbuh: Peran siologis dan dasar-dasar pemakaian. Bul. Agron. (edisi khusus November), 28–49.

Watson, J. V., Chambers, S. H., & Smith, P. J. (1987). A pragmatic approach to the analysis of DNA histograms with a de nable G1 peak. Cytometry Part A, 8(1), 1–8.

Wetter, L. R., & Constabel, F. (1991). Metode kultur jaringan tanaman. Bandung:Institut Teknologi Bandung.

Wetherell, M., & Potter, J. (1992). Mapping the language of racism: Discourse and the legitimation of exploitation. Columbia: Columbia University Press.

Wendi, W., & Zhien, M. (1991). Harmless delays for uniform persistence. Journal of Mathematical Analysis and Applications, 158(1), 256–268.

Widiyana, T. (2013). Teknik perbanyakan secara modern (kultur jaringan). Teknik Pertanian 14(2), 65–67. Jakarta: Penerbit Swadaya.

Wongtiem, P., Courtois, D., Florin, B., Juchaux, M., Peltier, D., Broun, P., & Ducos, J. P. (2011). E ects of cytokinins on secondary somatic embryogenesis of selected clone Rayong 9 of Manihot esculanta Crantz for ethanol production. Afr. J. Biotechnol. 10, 1600–1608.

Yuliarti, N. (2010). Kultur jaringan tanaman skala rumah tangga. Yogyakarta: Penerbit Andi.

Yustina. (2003). Kultur jaringan, cara memperbanyak tanaman secara efisien. Jakarta: Agromedia Pustaka.

Abidin. (1995). Zat pengatur tumbuh. Bandung: Angkasa.

Admojo, L., Indrianto, A., & Hadi, H. (2014). Perkembangan penelitian induksi kalus embriogenik pada jaringan vegetatif tanaman karet klonal (Hevea brasiliensis Muell. Arg). Warta Perkaretan, 33(1), 19–28.

Bajaj, Y. P. S. (1995). Somatic embryogenesis and its applications for crop improvement. Dalam Somatic Embryogenesis and Synthetic Seed I (pp. 105–125). Berlin, Heidelberg: Springer. BB Biogen. (2014). Dasar-dasar teknik kultur jaringan. Diakses 115 April 2017 dari http://biogen.litbang.pertanian.go.id/2014/07/ringkasan-kuliah-prof-r-dr-ika- mariska-s-1-dasar-dasar-teknik-kultur-jaringan-tanaman/.

Bairu, M. W., & Kane, M. E. (2011). Physiological and developmental problems encountered by in vitro cultured plants. Plant Growth Regulation, 63(2), 101–103.

Bajji, M., Bertin, P., Lutts, S., & Kinet, J. M. (2004). Evaluation of drought resistance-related traits in durum wheat somaclonal lines selected in vitro. Australian Journal of Exper- imental Agriculture, 44(1), 27–35.

Bhalerao, R. P., Eklöf, J., Ljung, K., Marchant, A., Bennett, M., & Sandberg, G. (2002). Shoot–derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. The Plant Journal, 29(3), 325–332.

Bhojwani, S. S., & Razdan, M. K. (1989). Plant tissue culture: Theory and practice. Elsevier. Bi, R. M., Kou, M., Chen, L. G., Mao, S. R., & Wang, H. G. (2007). Plant regeneration through

callus initiation from mature embryo of Triticum. Plant Breeding, 126(1), 9–12.

Chithra, M., Martin, K. P., Sunandakumari, C., & Madhusoodanan, P. V. (2005). Somatic embryogenesis, encapsulation, and plant regeneration of Rotula aquatica Lour., a rare rhoeophytic woody medicinal plant. In Vitro Cellular and Developmental Biology-Plant, 41(1), 28–31.

Chugh, A., & Khurana, P. (2002). Gene expression during somatic embryogenesis. Current Science, 83(6), 715–730.

Danso, K., & Ford-Lloyd, B. (2002). Induction of high-frequency somatic embryos in cassava for cryopreservation. Plant Cell Reports, 21(3), 226–232.

Davies, P. J. (1995). The plant hormone concept: Concentration, sensitivity and transport. Dalam Plant Hormones (hlm. 13–38). Dordrecht: Springer.

Dodeman, V. L., Ducreux, G., & Kreis, M. (1997). Zygotic embryogenesis versus somatic embryogenesis. Journal of Experimental Botany, 48(8), 1.493–1.509.

Dixon, R. A. (1985). Plant cell culture a practical approach. Washington DC: Department of Biochemistry, Royal Holloway College. Oxford: IRL Press.

Evans, D. A., & Sharp, W. R. (1986). Applications of somaclonal variation. Nature Biotechnology, 4(6), 528.

Ezura, H., Amagai, H., Kikuta, I., Kubota, M., & Oosawa, K. (1995). Selection of somaclonal variants with low-temperature germinability in melon (Cucumis melo L.). Plant Cell Reports, 14(11), 684–688.

Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., ... & Jürgens, G. (2003). E ux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature, 426(6963), 147.

Gray, D. J. (2005). Propagation from non-meristematic tissues-Non-zygotic embryogenesis, Chap.14, Dalam R. N. Trigiano, D. J. Gray (Eds.), Plant development and biotechnology. Boca Raton: CRC Press. hlm. 187–200.

Groll, J., Mycock, D. J., & Gray, V. M. (2002). E ect of medium salt concentration on di erentiation and maturation of somatic embryos of cassava (Manihot esculenta Crantz). Annals of Botany, 89(5), 645–648.

Gunawan, L. W. (1988). Teknik kultur jaringan tumbuhan. Bogor: Institut Pertanian Bogor (IPB).

Hankoua, B. B., Taylor, N. J., Ng, S. Y. C., Fawole, I., Puonti-Kaerlas, J., Padmanabhan, C., & Fondong, V. N. (2006). Production of the rst transgenic cassava in Africa via direct shoot organogenesis from friable embryogenic calli and germination of maturing somatic embryos. African Journal of Biotechnology, 5(19).

Harddeger, M., & Shakya, R. (2004). Transformation of carrot. I.S. Curtis (Ed.). Transgenic Crops of The World-Essential Protocol, Kluwer Academic Publisher, 291–300.

Hartman, H. T., Klester, D. E., & Davies, F. T. (1990). Plant propagation principle and practices. 5th ed. New Jersey: Prentice Hall.

Huan, L. V. T., & Tanaka, M. (2004). Callus induction from protocorm-like body segments and plant regeneration in Cymbidium (Orchidaceae). The Journal of Horticultural Science and Biotechnology, 79(3), 406–410.

Hutan, P. T. (2012). Pembentukan kalus remah dari eksplan daun ramin (Gonystylus bancanus (Miq) Kurz.). Jurnal Pemuliaan Tanaman Hutan, 6(3), 181–194.

Hutchinson, J. F., Kaul, V. I. J. A. Y., Maheswaran, G., Moran, J. R., Graham, M. W., & Richards, D. (1992). Genetic-improvement of oricultural crops using biotechnology. Australian Journal of Botany, 40(6), 765–787.

Idowu, P. E., Ibitoye, D. O., & Ademoyegun, O. T. (2009). Tissue culture as a plant production technique for horticultural crops. African Journal of Biotechnology, 8(16), 3782–3799.

Jain, S. M. (2001). Tissue culture-derived variation in crop improvement. Euphytica, 118(2), 153–166.

Jain, S. M. (2006). Biotechnology and mutagenesis in genetic improvement of cassava.

Cassava Improvement to Enhance Livelihoods in Sub-Saharan Africa and Northeastern Brazil.

Joseph, R., Yeoh, H. H., & Loh, C. S. (2004). Induced mutations in cassava using somatic embryos and the identi cation of mutant plants with altered starch yield and composition. Plant Cell Reports, 23(1–2), 91–98.

Kozai, T. (2015, May). Photoautotrophic (sugar-free medium) micropropagation–its principle and application. Dalam In vitro cellular & developmental biology-animal, 51, S14–S14. 233 Spring ST, New York, NY 10013 USA: Springer.

Kuksova, V. B., Piven, N. M., & Gleba, Y. Y. (1997). Somaclonal variation and in vitro induced mutagenesis in grapevine. Plant Cell, Tissue and Organ Culture, 49(1), 17–27.

Larkin, P. J., & Scowcroft, W. R. (1981). Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics, 60(4), 197–214.

Li, H. Q., Sautter, C., Potrykus, I., & Puonti-Kaerlas, J. (1996). Genetic transformation of cassava (Manihot esculenta Crantz). Nature Biotechnology, 14(6), 736.

Litz, R. E., Moore, G. A., & Srinivasan, C. (1985). In vitro systems for propagation and improvement of tropical fruits and palms. Horticultural Reviews, 7, 157–200.

Litz, R. E., & Gray, D. J. (1995). Somatic embryogenesis for agricultural improvement. World Journal of Microbiology and Biotechnology, 11(4), 416–425.

Liu, J., Zheng, Q., Ma, Q., Gadidasu, K. K., & Zhang, P. (2011). Cassava genetic transformation and its application in breeding. Journal of Integrative Plant Biology, 53(7), 552–569.

Ma, Q., Zhou, W., & Zhang, P. (2015). Transition from somatic embryo to friable embryogenic callus in cassava: dynamic changes in cellular structure, physiological status, and gene expression pro les. Frontiers in Plant Science, 6, 824.

Maluszynski, M., Ahloowalia, B. S., & Sigurbjörnsson, B. (1995). Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica, 85(1–3), 303–315.

Manrique-Trujillo, S., Díaz, D., Reaño, R., Ghislain, M., & Kreuze, J. (2013). Sweetpotato plant regeneration via an improved somatic embryogenesis protocol. Scientia Horticulturae, 161, 95–100.

Mallón, R., Covelo, P., & Vieitez, A. M. (2012). Improving secondary embryogenesis in Quercus robur: Application of temporary immersion for mass propagation. Trees, 26(3), 731–741.

Mattsson, J., Sung, Z. R., & Berleth, T. (1999). Responses of plant vascular systems to auxin transport inhibition. Development, 126(13), 2979–2991.

Mythili, P. K., Satyavathi, V., Pavankumar, G., Rao, M. V. S., & Manga, V. (1997). Genetic analysis of short term callus culture and morphogenesis in pearl millet, Pennisetum glaucum. Plant Cell, Tissue and Organ Culture, 50(3), 171–178.

Mujib, A., Banerjee, S., & Ghosh, P.D. 2005. Origin, development and structure of somatic embryos in selected bulbous ornamentals: BAP as inducer. p.15–24. Dalam A. Mujib, J. Samac (Eds.). Somatic embryogenesis, plant cell monogr. (2). Verlag-Berlin Heidenberg: Springer.

Nyange, N. E., Williamson, B., McNicol, R. J., & Hacker, C. A. (1995). In vitro screening of co ee genotypes for resistance to co ee berry disease (Colletotrichum kahawae). Annals of applied biology, 127(2), 251–261.

Oropeza, M., & de García, E. (1996). Somaclonal variants resistant to sugarcane mosaic virus and their agronomic characterization. In Vitro–Plant, 32(1), 26–30.

Perveen, A., & Mansuri, S. (2015). Rapid propagation of a biodiesel plant cassava (Manihot esculenta crantz) through tissue culture. Int. J. Biol. Biotech., 12(3), 369–372.

Priadi, D., & Sudarmonowati, E. (2006). Pengaruh komposisi media dan ukuran eksplan terhadap pembentukan kalus embriogenik beberapa genotipe lokal ubi kayu (Manihot esculenta Crantz). Biodiversitas, 7(3), 269–272.

Raemakers, C. J. J. M., Jacobsen, E., & Visser, R. G. F. (1995). Secondary somatic embryogenesis and applications in plant breeding. Euphytica, 81(1), 93–107.

Rahayu, E. S., & Habibah, N. A. (2009). Buku ajar kultur jaringan tumbuhan. Semarang, Universitas Negeri Semarang.

Redenbaugh, K. (1993). Synseeds: Applications of synthetic seeds to crop improvement. Boca Raton FL: CRC Press.

Ritchie, S. W., & Hodges, T. K. (1993). Cell culture and regeneration of transgenic plants. Transgenic Plants, 1, 147–178.

Schroeder, J. I., Kwak, J. M., & Allen, G. J. (2001). Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature, 410(6826), 327.

Schöpke, C., Taylor, N., Carcamo, R., Konan, N. K., Marmey, P., Henshaw, G. G., Beachy, R. N., & Fauquet, C. (1996). Regeneration of transgenic cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic suspension cultures. Nature Biotech, 14(6),731.

Shinoyama, H., Nomura, Y., Tsuchiya, T., & Kazuma, T. (2004). A Simple and e cient method for somatic embryogenesis and plant regeneration from leaves of chrysanthemum [Dendranthema× grandi orum (Ramat.) Kitamura]. Plant Biotechnology, 21(1), 25–33.

Stern, K. R., Jansky, S., & Bidlack, J. E. (2003). Introductory plant biology. New York: The McGraw-Hill Companies, Inc.

Sudarmonowati, E., Supatmi, & Reny, H. Z. (2009). Induction and regeneration of primary somatic embryos (PSE) and secondary somatic embryos (SSE) of local cassava genotypes Iding and Gebang for genetic transformation materials. Proceedings of Symposium & National Congress of PERIPI. Bogor, November 17–19, 2009.

Sudarmonowati, E., Fitriani, H., Supatmi, & Nurdiya, A. (2009). Factors affecting friable embryogenic callus in several plant species. Jurnal Konsorsium Bioteknologi (submitted Desember 2009).

Sudarmonowati, E., & Henshaw, G. G. (1992). The induction of somatic embryogenesis of recalcitrant cassava cultivars using picloram and dicamba. Dalam W. M. Roca, & A. M. Thro (Eds.). Prosiding International Scienti c Meeting Cassava Biotechnology Network (1, 1992, Cartagena de Indias, Colombia).

Taryono. (2012). Pengantar bioteknologi tanaman. Yogyakarta: Universitas Gadjah Mada.

Taylor, N. J., Edwards, M., Kiernan, R. J., Davey, C. D., Blakesley, D., & Henshaw, G. G. (1996). Development of friable embryogenic callus and embryogenic suspension culture systems in cassava (Manihot esculenta Crantz). Nature Biotechnology, 14(6), 726.

Taylor, N. J., Masona, M. V., Carcamo, R., Ho, T., Schöpke, C., & Fauquet, C. M. (2001). Production of embryogenic tissues and regeneration of transgenic plants in cassava (Manihot esculenta Crantz). Euphytica, 120(1), 25–34.

Tetu, T., Sangwan, R. S., & Sangwan-Norreel, B. S. (1990). Direct somatic embryogenesis and organogenesis in cultured immature zygotic embryos of Pisum sativum L. Journal of Plant Physiology, 137(1), 102–109.

Toonen, M. A. J., & de Vries, S. C. (1995). Initation of somatic embryos from single cell. Dalam T. L. Wang, & A. Cuming (Eds). Embryogenesis the generation of plant. Bios Scienti c Publishers Limited, Oxford, 173–177.

Ubalua, A. O., & Mbanaso, E. (2014). Somatic embryogenesis in two Nigerian cassava cultivars (Sandpaper and TMS 60444). Journal of Evolutionary Biology Research, 6(3), 9–12.

Vasil, I. K. (1994). Automation of plant propagation. Plant Cell, Tissue and Organ Culture, 39(2), 105–108.

von Arnold, S., Sabala, I., Bozhkov, P., Dyachok, J., & Filonova, L. (2002). Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 69(3), 233–249.

von Arnold, S., & Clapham, D. (2008). Spruce embryogenesis. Dalam Plant embryogenesis (pp. 31–47). Humana Press.

Wareing, P. F., & Phillips, I. D. J. (1981). Growth & di erentiation in plants. 3rd ed. Pergamon.

Wattimena, G. A., Gunawan, L. W., Mattjik, N. A., Syamsudin, E., Wiendi, N. M. A., & Ernawati, A. (1992). Bioteknologi tanaman laboratorium kultur jaringan tanaman. Departemen Pendidikan dan Kebudayaan. Direktorat Jenderal Pendidikan Tinggi. Pusat Antar Universitas IPB. Bogor, 309.

Willian, E. G., & Maheswaran, G. (1986). Somatic embryogenesis: Factors in uencing coordinated behaviour of cells as an embryogenic group. Annals of Botany, 57(4), 443–462.

Winarto, B., Mattjik, N. A., Purwito, A., & Marwoto, B. (2010). Aplikasi 2, 4-D dan TDZ dalam pembentukan dan regenerasi kalus pada kultur anther Anthurium. Jurnal Hortikultura, 20(1).

Wiendi, N. M. A., Wattimena, G. A., & Gunawan, L. V. (1991). Bioteknologi tanaman I. PAU IPB. 507 p.

Wijayanto, T. (2013). Prospek penerapan bioteknologi dalam pemanfaatan dan pengembangan biodiversitas padi lokal Sulawesi Tenggara. Jurnal Agroteknos, 3, 1.

Yunita, R. (2009). Pemanfaatan variasi somaklonal dan seleksi in vitro dalam perakitan tanaman toleran cekaman abiotik. Jurnal Litbang Pertanian, 28(4), 142–148.

Zainuddin, I. M., Schlegel, K., Gruissem, W., & Vanderschuren, H. (2012). Robust transforma- tion procedure for the production of transgenic farmer-preferred cassava landraces. Plant Methods, 8(1), 24.

Zhang, P., Phansiri, S., & Puonti-Kaerlas, J. (2001). Improvement of cassava shoot organ- ogenesis by the use of silver nitrate in vitro. Plant Cell, Tissue and Organ Culture, 67(1), 47–54.

Zimmerman, J. L. (1993). Somatic embryogenesis: A model for early development in higher plants. The Plant Cell, 5(10), 1411.

Ziv, M. (2000). Bioreactor technology for plant micropropagation. Horticultural Reviews, 24, 1–30.

Zuyasna & Hafsah, S. (2013). Induksi embrio somatik dari tanaman kakao adaptive Aceh menggunakan eksplan bunga serta zat pengatur tumbuh Piclroam. J. Floratek, 8, 1–9.

Ahiabu, R. K., Lokko, Y., Danso, K., & Klu, G. Y. P. (1997). Mutagenesis for ACMV resistance in a ghanian cassava cultivar “Bosom Nsia”. IAEATECDOC, 951, 9–18.

Ahloowalia, B. S., & Maluszynski, M. (2001). Induced mutations–A new paradigm in plant breeding. Euphytica, 118(2), 167–173.

Akhtar, K. P., Hussain, M., Khan, A. I., Haq, M. A., & Iqbal, M. M. (2004). In uence of plant age, white y population and cultivar resistance on infection of cotton plants by cotton leaf curl virus (CLCuV) in Pakistan. Field Crops Research, 86(1), 15–21.

Barkley, N. A., & Wang, M. L. (2008). Application of TILLING and EcoTILLING as reverse genetic approaches to elucidate the function of genes in plants and animals. Current Genomics, 9(4), 212–226.

Bajpai, P. (2013). Global production of bioetanol. Dalam Advances in Bioetanol (pp. 79–88). India: Springer.

Bado, S., Forster, B. P., Nielen, S., Ghanim, A., Lagoda, P. J., Till, B. J., & Laimer, M. (2015). Plant mutation breeding: Current progress and future assessment. Plant Breeding Reviews, 39, 23–88.

Ceballos, H., Fregene, M., Lentini, Z., Sánchez, T., Puentes, Y. I., Pérez, J. C., & To ño, A. P. (2005, June). Development and identi cation of high-value cassava clones. Dalam II International Symposium on Sweetpotato and Cassava: Innovative Technologies for Commercialization 703, 63–70.

Ceballos, H., Sanchez, T., To no, A. P., Rosero, E. A., Dufour, D., Smith, A. M., ... & Lentini, Z. (2007). Development and identi cation of cassava clones with special starch characteristics. In Proceedings Starch Update 2017 The 4th International Conference on Strach Technology, 6–7 November 2007. Bangkok, Thailand: Queen Sirikit National Convention Center.

Chakraborty, N. R., & Paul, A. (2013). Role of induced mutations for enhancing nutrition quality and production of food. International Journal of Bio-Resource & Stress Management, 4(1).

Chi, Y. H., Paeng, S. K., Kim, M. J., Hwang, G., Melencion, S. M. B., Oh, H., & Lee, S. Y. (2014). Redox-dependent functional switching of plant proteins accompanying with their structural changes. Thiol-based Redox Homeostasis and Signalling, 84.

FAO-IAEA. (2011). Mutant variety database. Diakses dari http://mvgs.iaea.org/AboutMu- tantVarieties.aspx.

Fathoni, A. (2017). Riset ubi kayu: Status dan prospek pemanfaatannya. Dipresentasikan pada Lokakarya Peran Riset dan Kebijakan untuk Penguatan Rantai Nilai Ekonomi Ubi Kayu Indonesia. Cibinong, 7 September 2017.

Gady, A. L., Hermans, F. W., van de Wal, M. H., van Loo, E. N., Visser, R. G., & Bachem, C. W. (2009). Implementation of two high through-put techniques in a novel application: Detecting point mutations in large EMS mutated plant populations. Plant Methods, 5(1), 13.

Gilchrist, E., & Haughn, G. (2010). Reverse genetics techniques: Engineering loss and gain of gene function in plants. Brie ngs in Functional Genomics, elp059.

Hartati, N. S., Fitriani, H., Supatmi, & Sudarmonowati, E. (2012). Karakter umbi dan nutrisi tujuh genotipe ubi kayu (Manihot esculenta). Agricola Jurnal Pertanian, 2(2), 101–110. ISSN: 2088-1673. Fakultas Pertanian, Universitas Musamus Merauke.

Hartati, N. S., Supatmi, Aryaningrum, P. D., & Sudarmonowati, E. (2013). Identi cation of di erentially expressed cDNA in cassava under drought stress using cDNA-RAPD approach. Annales Bogoriensis. 17(1), 7–14.

Hallajian, M. T. (2016). Mutation breeding and drought stress tolerance in plants. Dalam Drought stress tolerance in plants, 2, 359–383. Springer International Publishing.

Han, B., Gu, J., Zhao, L., Guo, H., Xie, Y., Zhao, S., ... & Liu, L. (2016). Factors A ecting the radiosensitivity of hexaploid wheat to-irradiation: Radiosensitivity of hexaploid wheat (Triticum aestivum L.). PloS One, 11(8), e0161700.

Joseph, R., Yeoh, H. H., & Loh, C. S. (2004). Induced mutations in cassava using somatic embryos and the identi cation of mutant plants with altered starch yield and composition. Plant Cell Reports, 23(1–2), 91–98.

Jain, S. M. (2006). Biotechnology and mutagenesis in genetic improvement of cassava.

Cassava Improvement to Enhance Livelihoods in Sub-Saharan Africa and Northeastern Brazil.

Jansson, C., Westerbergh, A., Zhang, J., Hu, X., & Sun, C. (2009). Cassava, a potential biofuel crop in (the) People’s Republic of China. Applied Energy, 86, S95–S99.

Kamaruddin, N. Y., Abdullah, S., & Harun, A. R. (2016). The e ect of gama rays on the radiosensitivity and cytological analysis of Zingiber o cinale Roscoe Varieties Bentong and Tanjung Sepat. International Journal of Advances in Agricultural & Environmental Engineering, 3(1), 143–145.

Kumar, D. P., Chaturvedi, A., Sreedhar, M., Aparna, M., Venu-Babu, P., & Singhal, R. K. (2013). Gama radios

Downloads

Published

May 17, 2020